The CRISPR therapy: A revolutionary breakthrough in genetic medicine

Authors

DOI:

https://doi.org/10.56226/88

Keywords:

CRISPR/Cas9 therapy, gene, DNA, RNA

Abstract

Gene editing with CRISPR-Cas9 technology revolutionizes modern medicine by enabling precise DNA modifications. Initially discovered as a bacterial defense mechanism, the Cas9 enzyme, guided by RNA, can target and cut specific DNA sites, allowing for gene editing. Applications include genetic engineering, functional studies, and potential treatments for genetic diseases like cancer. Notably, in 2023, CRISPR-Cas9 was approved for treating sickle cell anaemia with significant results, despite challenges like long-term security and high costs. CRISPR-Cas9 technology allows for correcting genetic defects, treating diseases, and improving agricultural crops. It can regulate gene transcription through the CRISPRi system, using an inactive Cas9 to interfere with gene expression without permanently altering DNA. This gene-editing tool shows promise in gene therapy, potentially curing diseases like HIV-1, sickle cell disease, and haemophilia B. However, challenges include off-target mutations and efficient delivery of CRISPR/Cas9. Precise target site selection and dosage control are crucial, with tools like CasOT helping identify and prevent unwanted mutations. CRISPR-Cas9 requires a PAM sequence to function, narrowing its targets in the genome but increasing specificity. Production of gRNA faces challenges due to mRNA processing, with alternatives like the artificial gene RGR showing promise. Efficient delivery methods are still needed, with current techniques involving DNA and RNA injection. Future applications include treating genetic diseases and agricultural improvements, with ongoing research essential for overcoming challenges and ensuring safety and accuracy.
Global collaboration is vital for the ethical use of this technology.

Contribution to evidence-based healthcare: CRISPR therapy represents an exciting frontier in genetic medicine, allowing for precise gene editing and opening up new possibilities for treating incurable diseases.

References

Antunes, V. (2022). On Nursing Research and Evidence-Based Practice: Topics for researchers and practitioners. International Healthcare Review (online), 1(1). https://doi.org/10.56226/ihr.v1i1.12

Auer, T. O., Duroure, K., De Cian, A., Concordet, J. P., & Del Bene, F. (2014). Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome research, 24(1), 142–153. https://doi.org/10.1101/gr.161638.113

Barrangou, R., & Horvath, P. (2007). CRISPR-Cas: Bacterial Immunity and Beyond. Annual Review of Genetics, 41, 257-273. https://doi.org/10.1146/annurev.genet.41.110507.113830

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.), 315(5819), 1709–1712. https://doi.org/10.1126/science.1138140

Bassett, A. R., Tibbit, C., Ponting, C. P., & Liu, J. L. (2013). Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell reports, 4(1), 220–228. https://doi.org/10.1016/j.celrep.2013.06.020 .

Casegas, J. On Self Care Management of Diabetes: An Integrative literature review to understand challenges faced by the elderly. International Healthcare Review (online). https://doi.org/10.56226/70

Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J. W., & Xi, J. J. (2013). Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell research, 23(4), 465–472. https://doi.org/10.1038/cr.2013.45 .

Chen, S., & Qin, Y. (2023). On Ethics, Biomedical Education and Health Promotion: International and Chinese Perspectives. International Healthcare Review (online). https://doi.org/10.56226/46

Chen, Y., Moreira, P., Liu, W., Monachino, M., Nguyen, T. L. H., & Wang, A. (2022). Is there a gap between artificial intelligence applications and priorities in health care and nursing management? Journal of Nursing Management, 1–7. https://doi.org/10.1111/jonm.13851

Cheng, X., Fan, S., Wen, C., & Du, X. (2020). CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges. Briefings in functional genomics, 19(3), 209–214. https://doi.org/10.1093/bfgp/elaa001

Cho, S. W., Kim, S., Kim, J. M., & Kim, J. S. (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature biotechnology, 31(3), 230–232. https://doi.org/10.1038/nbt.2507

Chylinski, K., Makarova, K. S., Charpentier, E., & Koonin, E. V. (2014). Classification and evolution of type II CRISPR-Cas systems. Nucleic acids research, 42(10), 6091–6105. https://doi.org/10.1093/nar/gku241

Conant, D., Hsiau, T., Rossi, N., Oki, J., Maures, T., Waite, K., Yang, J., Joshi, S., Kelso, R., Holden, K., Enzmann, B. L., & Stoner, R. (2022). Inference of CRISPR Edits from Sanger Trace Data. The CRISPR journal, 5(1), 123–130. https://doi.org/10.1089/crispr.2021.0113

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.), 339(6121), 819–823. https://doi.org/10.1126/science.1231143

Ding, Q., Regan, S. N., Xia, Y., Oostrom, L. A., Cowan, C. A., & Musunuru, K. (2013). Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell stem cell, 12(4), 393–394. https://doi.org/10.1016/j.stem.2013.03.006

Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096

Dsouza B, Prabhu R, Unnikrishnan B, Ballal S, Mundkur SC, Chandra Sekaran V, Shetty A, and Moreira, Paulo. (2023) Effect of Educational Intervention on Knowledge and Level of Adherence among Hemodialysis Patients: A Randomized Controlled Trial. Glob Health Epidemiol Genom. 2023 Mar 31;2023:4295613. doi: 10.1155/2023/4295613. PMID: 37033597; PMCID: PMC10081894. https://ops.hindawi.com/author/4295613/

Dsouza, B. (2022). On Sustainable Health Systems: A Research Emergency in Pandemic times. International Healthcare Review (online), 1(1). https://doi.org/10.56226/ihr.v1i1.7

Ebina, H., Misawa, N., Kanemura, Y., & Koyanagi, Y. (2013). Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific reports, 3, 2510. https://doi.org/10.1038/srep02510

FDA Approves First Gene Therapies to Treat Patients with Sickle Cell Disease. (2023). U.S. Food and Drug Administration. Retrieved from https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-treat-patients-sickle-cell-disease

Ferreira, J., Horta, P., & Geada, F. (2023). Internal Audit Process in eHealth: A case study. International Healthcare Review (online). https://doi.org/10.56226/50

Friedland, A. E., Tzur, Y. B., Esvelt, K. M., Colaiácovo, M. P., Church, G. M., & Calarco, J. A. (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature methods, 10(8), 741–743. https://doi.org/10.1038/nmeth.2532

Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., & Sander, J. D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature biotechnology, 31(9), 822–826. https://doi.org/10.1038/nbt.2623

Gao Y, Zhang S, Zhao Y, Yang T, Moreira P and Sun G (2024) Reduction of retinal vessel density in non-exudative macular neovascularization: a retrospective study. Front. Med. 10:1219423. doi: 10.3389/fmed.2023.1219423

Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-Guided Genome Editing. Trends in Biotechnology, 30(7), 397-405. https://doi.org/10.1016/j.tibtech.2012.05.004

Gene therapy: advances, challenges and perspectives. (2017). SciELO Brazil. Available at: https://doi.org/10.1590/S1679-45082017RB4024 . Accessed on: 19 out. 2024

Guernet, A., & Grumolato, L. (2017). CRISPR/Cas9 editing of the genome for cancer modeling. Methods (San Diego, Calif.), 121–122, 130–137. https://doi.org/10.1016/j.ymeth.2017.03.007 .

Guernet, C., & Grumolato, L. (2017). CRISPR/Cas9: A New Tool for Gene Editing. Frontiers in Genetics, 8, 108. https://doi.org/10.3389/fgene.2017.00108

Hai, L., Cui, Y., & Zhang, J. (2024) The Future of Long-Term-Care: A Visualization and analysis of citespace-based study for the disabled elderly . International Healthcare Review (online). https://doi.org/10.56226/76

Han T, Han M, Moreira P, Song H, Li P and Zhang Z (2023) Association between specific social activities and depressive symptoms among older adults: A study of urban-rural differences in China. Frontiers in Public Health 11:1099260. DOI: 10.3389/fpubh.2023.1099260 .

Hendriks, D., Clevers, H., & Artegiani, B. (2020). CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell stem cell, 27(5), 705–731. https://doi.org/10.1016/j.stem.2020.10.014

Hockemeyer, D., Soldner, F., Beard, C., Gao, Q., Mitalipova, M., DeKelver, R. C., Katibah, G. E., Amora, R., Boydston, E. A., Zeitler, B., Meng, X., Miller, J. C., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., & Jaenisch, R. (2009). Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature biotechnology, 27(9), 851–857. https://doi.org/10.1038/nbt.1562

Hou, Z., Zhang, Y., Propson, N. E., Howden, S. E., Chu, L. F., Sontheimer, E. J., & Thomson, J. A. (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proceedings of the National Academy of Sciences of the United States of America, 110(39), 15644–15649. https://doi.org/10.1073/pnas.1313587110

Hruscha, A., Krawitz, P., Rechenberg, A., Heinrich, V., Hecht, J., Haass, C., & Schmid, B. (2013). Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development (Cambridge, England), 140(24), 4982–4987. https://doi.org/10.1242/dev.099085

Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh, J. R., & Joung, J. K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology, 31(3), 227–229. https://doi.org/10.1038/nbt.2501 .

Jacennik, B.; Zawadzka-Gosk, E.; Moreira, J.P.; Glinkowski, W.M. Evaluating Patients’ Experiences with Healthcare Services: Extracting Domain and Language-Specific Information from Free-Text Narratives. Int. J. Environ. Res. Public Health 2022, 19, 10182. https://doi.org/10.3390/ ijerph191610182

Jao, L. E., Wente, S. R., & Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13904–13909. https://doi.org/10.1073/pnas.1308335110 .

Jia, N., Wang, X., & Wang, H. (2018). CRISPR/Cas9: A New Tool for Gene Editing. Frontiers in Genetics, 9, 98. https://doi.org/10.3389/fgene.2018.00098

Jia, X., Tang, X., Li, Y. And Paulo Moreira (2023) Update of dialysis initiation timing in end stage kidney disease patients: is it a resolved question? A systematic literature review. BMC Nephrol 24, 162 (2023). https://doi.org/10.1186/s12882-023-03184-4

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, N.Y.), 337(6096), 816–821. https://doi.org/10.1126/science.1225829

Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., & Doudna, J. (2013). RNA-programmed genome editing in human cells. Elife, 2, e00471. https://doi.org/10.7554/eLife.00471

Kehinde, O., Dixon-Lawson, K., & Mendelsohn, A. (2023). On Community Pharmacists and Promotion of Lifestyle Modification in Adults with Hypertension: Practice Protocol. International Healthcare Review (online). https://doi.org/10.56226/49

Laurent, M., Geoffroy, M., Pavani, G., & Guiraud, S. (2024). CRISPR-Based Gene Therapies: From Preclinical to Clinical Treatments. Cells, 13(10), 800. https://doi.org/10.3390/cells13100800

Ledford H. (2015). CRISPR, the disruptor. Nature, 522(7554), 20–24. https://doi.org/10.1038/522020a

Li, N., GUO, M., YOU, S., & JI, H. (2022). On Patient Readiness for Hospital Discharge: an update on recent Evidence. International Healthcare Review (online). https://doi.org/10.56226/ihr.v1i2.30

Li, Z. H., Wang, J., Xu, J. P., Wang, J., & Yang, X. (2023). Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Military Medical Research, 10(1), 12. https://doi.org/10.1186/s40779-023-00447-x

Lloyd Williams, D. (2022). On Healthcare Research Priorities in the USA : From Long COVID to Precision Health, what else is new?. International Healthcare Review (online), 1(1). https://doi.org/10.56226/ihr.v1i1.14

Loureiro Pais Batista, S. M., Pereira Gaspar, A. C., Madeira dos Santos, B., da Cunha Silva, F., Fonseca Marta, F., Pinto Pedrosa, I., Lopes Martins, R. M., Sousa Albuquerque, C. M., Nunes Pereira de Azevedo e Andrade, A. I., & Carvalho Duarte, J. (2023). Nurses’ knowledge of patients´’ swallowing ability : a cross sectional study in Portugal. International Healthcare Review (online). https://doi.org/10.56226/64

Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J., Terns, R. M., Terns, M. P., White, M. F., Yakunin, A. F., Garrett, R. A., van der Oost, J., Backofen, R., ... Koonin, E. V. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature reviews. Microbiology, 13(11), 722–736. https://doi.org/10.1038/nrmicro3569

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science (New York, N.Y.), 339(6121), 823–826. https://doi.org/10.1126/science.1232033

Manghwar, H., Lindsey, K., Zhang, X., & Jin, S. (2019). CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing. Trends in plant science, 24(12), 1102–1125. https://doi.org/10.1016/j.tplants.2019.09.006

Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J., Gu, H., & Qu, L. J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell research, 23(10), 1233–1236. https://doi.org/10.1038/cr.2013.123

Monachino, M. . (2022). On Healthcare Research for Disease Prevention: Critical Knowledge Gaps in European Public Health. International Healthcare Review (online), 1(1). https://doi.org/10.56226/ihr.v1i1.6

Moreira, P. (2022). On New Clinical Research Methods and Technologies: From decentralised designs to Artificial Intelligence. International Healthcare Review (online), 1(1). https://doi.org/10.56226/ihr.v1i1.11

Nguyen, T. L. H. (2022). On Improving Healthcare with a world perspective: Evidence for Global Health Programs. International Healthcare Review (online), 1(1). https://doi.org/10.56226/ihr.v1i1.10

Niu, M. (2023). On Planning and Designing General Hospitals in Smart Technology Contexts. International Healthcare Review (online). https://doi.org/10.56226/59

Nuñez, J. K., Lee, A. S., Engelman, A., & Doudna, J. A. (2015). Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature, 519(7542), 193–198. https://doi.org/10.1038/nature14237

Paul, B., & Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. Biomedical journal, 43(1), 8–17. https://doi.org/10.1016/j.bj.2019.10.005

Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

Shen, B., Zhang, J., Wu, H., Wang, J., Ma, K., Li, Z., Zhang, X., Zhang, P., & Huang, X. (2013). Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell research, 23(5), 720–723. https://doi.org/10.1038/cr.2013.46

Song, C., & Xie, H. (2023). On Disparities in Breast Cancer Screening: An Analysis of Behavioral Risk Factor Surveillance Survey Data related to Racial/ Ethnic characteristics. International Healthcare Review (online). https://doi.org/10.56226/53

Sun P, Li Z, Guo W, Moreira P. Evidence on the need for early identification of asymptomatic true abdominal aortic aneurysm in pregnancy: A case report. SAGE Open Medical Case Reports. 2023;11. doi:10.1177/2050313X231173789

Tian, M., Li , X., Zhou, F., Wang , Y., Wang, Q., Pan , N., & Ji , H. (2023). On the Psychological experiences of Hematopoietic stem cell donors: an update on International Evidence. International Healthcare Review (online). https://doi.org/10.56226/31

Torikai, H., Reik, A., Liu, P. Q., Zhou, Y., Zhang, L., Maiti, S., Huls, H., Miller, J. C., Kebriaei, P., Rabinovich, B., Lee, D. A., Champlin, R. E., Bonini, C., Naldini, L., Rebar, E. J., Gregory, P. D., Holmes, M. C., & Cooper, L. J. (2012). A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood, 119(24), 5697–5705. https://doi.org/10.1182/blood-2012-01-405365

Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., & Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910–918. https://doi.org/10.1016/j.cell.2013.04.025

Wang, M., Yang, Q., & Chen, Y. (2024). International comparison of the financing mechanism of basic medical insurance and its implications for China. International Healthcare Review (online). https://doi.org/10.56226/63

Wang, Y., Li, Z., Xu, J., Zeng, B., Ling, L., You, L., Chen, Y., Huang, Y., & Tan, A. (2013). The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell research, 23(12), 1414–1416. https://doi.org/10.1038/cr.2013.146

Wei, L., & Xue, J. (2022). A Longitudinal study on the Emotional Support Mechanism of the Mental Health of Empty Nesters: Recent evidence from China National Health and Retirement Survey. International Healthcare Review (online). https://doi.org/10.56226/37

Wei, Y. (2023). Opportunities and challenges in cross-border healthcare: A case study based on the Court of Justice of the European Union. International Healthcare Review (online). https://doi.org/10.56226/65

Wiedenheft, B., Zhou, K., Jinek, M., Coyle, S. M., Ma, W., & Doudna, J. A. (2009). Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure (London, England : 1993), 17(6), 904–912. https://doi.org/10.1016/j.str.2009.03.019

Xiao, A., Cheng, Z., Kong, L., Zhu, Z., Lin, S., Gao, G., & Zhang, B. (2014). CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics (Oxford, England), 30(8), 1180–1182. https://doi.org/10.1093/bioinformatics/btt764

Xie, K., & Yang, Y. (2013). RNA-guided genome editing in plants using a CRISPR-Cas system. Molecular plant, 6(6), 1975–1983. https://doi.org/10.1093/mp/sst119

Yu, Z., Ren, M., Wang, Z., Zhang, B., Rong, Y. S., Jiao, R., & Gao, G. (2013). Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics, 195(1), 289–291. https://doi.org/10.1534/genetics.113.153825 .

Yujiao Zhang, Yong Zhang, Manyi Ren, Minghua Xue, Chunying Hu, Yinglong Hou, Zhiyuan Li, Haiyan Qu and Paulo Moreira. (2023) Atrial standstill associated with lamin A/C mutation: A case report. SAGE Open Medical Case Reports. 2023;11. doi:10.1177/2050313X231179810

Zhan, X., Rindtorff, N., Betge, J., Ebert, M. S., & Boutros, M. (2018). CRISPR/Cas9: A New Tool for Gene Editing. Frontiers in Genetics, 8, 108. https://doi.org/10.3389/fgene.2018.00108

Zhang, B., Li, Y., Cao, M., & Xu, C. (2023). On Workplace bullying in nursing: Findings from a rapid review of the literature . International Healthcare Review (online). https://doi.org/10.56226/51

Zhang, L., Lei, J., Zhang, J. et al. Undiagnosed Long COVID-19 in China Among Non-vaccinated Individuals: Identifying Persistent Symptoms and Impacts on Patients' Health-Related Quality of Life. J Epidemiol Glob Health (2022). https://doi.org/10.1007/s44197-022-00079-9

Zhang, L., Moreira, J. P., & Xi, Y. (2022). What is Long COVID-19? Clarifying Definitions and Symptoms. International Healthcare Review (online). https://doi.org/10.56226/ihr.v1i2.28

CRISPR Image

Published

16-12-2024

How to Cite

da Silva Barreto, G., Brito do Nascimento, J., Cristina Santos de Almeida, K., Carlos Marcolino Neto, J., & Lucas Ferreira Luz da Silva, S. (2024). The CRISPR therapy: A revolutionary breakthrough in genetic medicine. International Healthcare Review (online). https://doi.org/10.56226/88

Issue

Section

Recent Articles