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ABSTRACT  

Gene editing with CRISPR-Cas9 technology revolutionizes modern medicine by 

enabling precise DNA modifications. Initially discovered as a bacterial defense 

mechanism, the Cas9 enzyme, guided by RNA, can target and cut specific DNA sites, 

allowing for gene editing. Applications include genetic engineering, functional 

studies, and potential treatments for genetic diseases like cancer. Notably, in 2023, 

CRISPR-Cas9 was approved for treating sickle cell anaemia with significant results, 

despite challenges like long-term security and high costs. CRISPR-Cas9 technology 

allows for correcting genetic defects, treating diseases, and improving agricultural 

crops. It can regulate gene transcription through the CRISPRi system, using an 

inactive Cas9 to interfere with gene expression without permanently altering DNA. 

This gene-editing tool shows promise in gene therapy, potentially curing diseases 

like HIV-1, sickle cell disease, and haemophilia B. However, challenges include off-

target mutations and efficient delivery of CRISPR/Cas9. Precise target site selection 

and dosage control are crucial, with tools like CasOT helping identify and prevent 

unwanted mutations. CRISPR-Cas9 requires a PAM sequence to function, narrowing 

its targets in the genome but increasing specificity. Production of gRNA faces 

challenges due to mRNA processing, with alternatives like the artificial gene RGR 

showing promise. Efficient delivery methods are still needed, with current 

techniques involving DNA and RNA injection. Future applications include treating 

genetic diseases and agricultural improvements, with ongoing research essential for 

overcoming challenges and ensuring safety and accuracy.  

Global collaboration is vital for the ethical use of this technology.  

 

Contribution to evidence-based healthcare: CRISPR therapy represents an 

exciting frontier in genetic medicine, allowing for precise gene editing and opening 

up new possibilities for treating incurable diseases.  
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Introduction 

Gene editing has long been a field of great 

interest in modern medicine, and the 

technology of cluster-interspaced regularly 

interspaced short palindromic repeats 

(CRISPR)-Cas9 has emerged as a 

transformative tool that allows for precise 

modifications to DNA, enabling significant 

advances in the treatment of genetic diseases 

(Li et al., 2023). 

This system is described as an RNA-mediated 

adaptive immune system defence that is 

detected in bacteria and archaea. This system 

prevents the invasion of viruses and plasmids 

into these organisms (Paul & Montoya, 2020, 

Jinek et al., 2012). Cas9, belonging to the 

CRISPR Type II system, has attracted the 

interest of many scientists. Cas9 encodes a 

guide RNA (gRNA), forms a direct bond to the 

target DNA with the Watson–Crick base 

pairing, and promotes its cleavage. The host 

cell responds to this double-stranded break 

with two different mechanisms: (a) junction of 

nonhomologous ends (NHEJ) and (b) 

homology-directed repair (HDR) that lead, 

respectively, to insertion/deletion and frame-

shift mutation in the target DNA and HDR that 

offers a donor DNA as a template for 

homologous recombination 

(Gasiunas, Barrangou, Horvath and Siksnys, 

2012; Guernet and Grumolato, 2017; Zhan, 

Rindtorff, Betge, Ebert and Boutros, 2018). 

Cas9 has many applications in genetic 

engineering, such as gene editing, gene 

expression, and functional gene studies. Based 

on these characteristics, Cas9 has attracted a 

lot of attention in the treatment of many 

diseases caused by mutations. Thus, it seems 

that Cas9 has made a revolution in the 

treatment of diseases such as cancer (Hsu, 

Lander, and Zhang, 2014; Jia et al., 2018).  

Initially discovered in bacteria as a defence 

mechanism against viruses, CRISPR-Cas9 

technology uses RNA-guided Cas9 proteins to 

locate and cut specific DNA sequences.  In 

2007, researchers discovered that these 

What do we already know about this topic? 

In 2023, it was approved to treat sickle cell anemia, showing significant results. However, it faces challenges such as long-term safety and high 

costs. CRISPR-Cas9 technology is a revolutionary tool for genome editing, allowing easy modification of DNA sequences and gene functions. It 

uses guide RNA (gRNA) to direct the Cas9 enzyme, which cuts DNA, and cellular repair mechanisms to introduce precise modifications. 

 

What is the main contribution to Evidence-Based Practice from this article? 

CRISPR/Cas9 gene editing holds promise for gene therapy, allowing diseases to be cured by correcting mutations or inserting protective genes. 

Examples include HIV-1, sickle cell disease, and hemophilia B. 

 

What are this research’s implications towards health policy? 

CRISPR-Cas9 technology requires a PAM sequence to function, which restricts its targets in the genome but increases specificity. The 

production of gRNA faces challenges due to mRNA processing, with alternatives such as the artificial gene RGR showing promise. CRISPR/Cas9 

delivery still needs to be developed more efficiently, with DNA and RNA injection being the current techniques. Future applications include 

treating genetic diseases and improving agriculture, and continued research is essential to overcome challenges and ensure safety and 

accuracy. Global collaborations are essential to the ethical use of the technology. 
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sequences were part of a bacterial immune 

system. The bacteria used CRISPR to defend 

against viruses by embedding segments of viral 

DNA into their sequences to recognize and 

destroy invading viruses in future infections. 

This process allows for the removal, insertion, 

or modification of target genes, providing a 

highly accurate approach to gene editing (Paul 

& Montoya, 2020, Barrangou & Horvath, 2007).  

One of the most promising applications of 

CRISPR is in the treatment of genetic diseases. 

In 2023, the approval of CRISPR-based 

treatments such as Casgevy for sickle cell 

anaemia and beta-thalassemia marked a 

significant breakthrough. These therapies 

correct genetic mutations in bone marrow 

stem cells, allowing for the production of 

functional haemoglobin, which is crucial for 

patients suffering from these conditions (FDA, 

2023).  

Despite its revolutionary potential, CRISPR 

therapy faces considerable challenges. Long-

term safety is a primary concern, given the 

possibility of off-target effects that can result in 

unwanted mutations. In addition, the high cost 

of therapies limits access, raising questions 

about health equity (Gene, 2017). 

 

Working Principle 

Generally, the CRISPR-Cas system is composed 

of a clustered set of CRISPR-associated genes 

(Cas) and a CRISPR matrix (repeated sequences 

and single spacer sequences; Hsu et al., 2014). 

Diversity in Cas genes and their positioning is 

the basis of the CRISPR-Cas classification 

(Figure 1; Makarova, Wolf et al., 2015). Cas 

genes are responsible for encoding functional 

proteins known as effector complexes. CRISPR-

Cas systems are divided into two classes and 

each class has several types and subtypes 

(Makarova, Wolf et al., 2015). Class 1 is found 

in bacteria and archaea (hyperthermophiles), 

while Class 2 is detected only in bacteria (non-

hyperthermophiles; Chylinski, Makarova, 

Charpentier and Koonin, 2014).   

Figure 1 demonstrates the schematic structure 

of different classes and types of the CRISPR-

Cas system. Generally, the structure of 

functional proteins is simpler in Class 2 

compared to Class 1. Thus, the act of functional 

proteins (Cas proteins) in Type II and Type V is 

performed by Cas9 and Cpf1, respectively. 

Cas9 and Cpf1 are single, large proteins. 

However, functional proteins in Class 1 are 

multi-subunits and consist of multiple proteins 

(CASCADE complex for Type I; Cmr or Csm 

RAMP complexes for Type III; Makarova, Wolf 

et al., 2015). The Cas1 and Cas2 genes are 

observed in all types except Type IV (Makarova, 

Wolf et al., 2015). Different Cas proteins have 

various roles in the CRISPR-Cas system. The 

Cas1 protein is a well-known integrase enzyme 

that is required for the specific breakdown of a 

CRISPR matrix to insert a newly identified 

spacer (Paul & Montoya, 2020, Nuñez, Lee 

Engelman, & Doudna, 2015; Wiedenheft et al., 

2009). The role of the Cas2 protein is unclear; 

however, this protein has RNase and DNase 

activities and is required for the adaptation 

phase in Escherichia coli (see below; Makarova, 

Wolf et al., 2015; Nam et al., 2012). 
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Figure 1 The schematic illustration of the classification of the CRISPR-Cas system. Blue rhombus: repeated units; 

green circle: spacer sequences; grey rectangle: effector modulus complex. CRISPR-Cas: clustered regularly 

intercalated short palindromic repeats/CRISPR-associated nuclease. 

The CRISPR tool is powerful for editing 

genomes. It allows researchers to easily alter 

DNA sequences and modify the function of 

genes. Its potential applications include 

correcting genetic defects, treating and 

preventing the spread of diseases, and 

improving crops. 

⚫ Guide RNA (gRNA): This is a specially 

designed RNA that guides the Cas9 

enzyme to the specific DNA sequence that 

one wishes to edit. Guide RNA is 

complementary to the target sequence in 

DNA, allowing it to couple precisely. 

⚫ Cas9: An enzyme that cuts DNA. When 

guided by the guide RNA, Cas9 makes a 

double-strand cut in the target DNA 

sequence. After cutting, the cell's DNA 

repair mechanisms kick in, making it 

possible to insert, delete, or modify DNA 

sequences. 

Editing Process: 

⚫ Recognition and binding: gRNA binds to 

the target DNA sequence, thanks to the 

complementarity between RNA and DNA 

bases. 

⚫ DNA cutting: Cas9, guided by gRNA, cuts 

the two strands of the DNA molecule at a 

specific position. 

⚫ DNA Repair: Cells have natural DNA 

repair mechanisms that are activated after 

cutting. This repair can be used to 

introduce precise changes to the genome, 

such as inserting new DNA sequences or 

correcting mutations. 

 

Applications of CRISPR 

 

Genome editing 

CRISPR/Cas9 provides a robust, multiplexable 

genome editing tool, allowing researchers to 

precisely manipulate specific genomic elements 

and facilitating the elucidation of the function 

of target genes in biology and disease. 

Through the co-delivery of plasmids that 

express Cas9 and crRNA, CRISPR/Cas9 has 

been used to induce specific genomic 

modifications in human cells (Manghwar, 

Lindsey, Zhang & Jin, 2019, Cong et al., 2013, 

Jinek et al., 2013, Cho et al., 2013, Mali et al., 

2013, Hou et al., 2013). By integrating several 

distinct gRNAs with Cas9 into a CRISPR matrix, 

CRISPR/Cas9 can simultaneously induce 

multiple mutations in mammalian genomes 

(Cong et al., 2013). In addition to mammalian 
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genomes, CRISPR/Cas9 also demonstrates its 

potentiality in editing the genome of zebrafish 

(Hruscha et al., 2013, Jao et al., 2013, Chang et 

al., 2013, Hwang et al., 2013), mice (Wang et 

al., 2013, Shen et al., 2013), drosophila 

(Manghwar, Lindsey, Zhang & Jin, 2019, Bassett 

et al., 2013, Yu et al.,  2013), caenorhabditis 

elegans (Friedland et al., 2013), Bombyx mori 

(Wang et al., 2013), and bacteria. For example, 

Bassett et al. provided an enhanced RNA 

injection-based CRISPR/Cas9 system, which 

was highly efficient in creating the desired 

mutagenesis in the Drosophila genome 

(Manghwar, Lindsey, Zhang, & Jin, 2019, 

Bassett et al., 2013).  

Through direct injection of mRNA and gRNA 

Cas9 into the embryo, they successfully 

induced mutagenesis at target sites in up to 

88% of the injected flies. The generated 

mutations were transmitted stably to 33% of the 

total offspring through the germline (Cheng, 

Fan, Wen Du, 2020, Bassett et al., 2013).  

CRISPR/Cas9 is also used to induce desired 

genomic changes in plants to generate specific 

traits, such as valuable phenotypes or disease 

resistance (Cheng, Fan, Wen Du, 2020, Xie et 

al., 2013). To validate the application of 

CRISPR/Cas9 in plants, Jiang et al. transferred 

the green fluorescence protein gene to the 

genomes of Arabidopsis and tobacco, and 

bacterial rust susceptibility genes to the rice 

genome. Miao et al. illustrated the robustness 

and efficiency of CRISPR/Cas9 in rice genome 

editing. By modifying crop genomes, 

CRISPR/Cas9 can be used to improve crop 

quality as a new breeding technique in the 

future (Miao et al., 2013). 

 

Transcription regulation 

The regulation of gene transcription in living 

organisms is very useful for studies of gene 

function and transcriptional networks. By 

disrupting functional sites related to 

transcription, CRISPR/Cas9 can regulate the 

transcription of specific genes. However, this 

process is irreversible due to permanent 

modifications to DNA. Recently, a modified 

CRISPR/Cas9 system called CRISPR inference 

(CRISPRi), was developed for regulation of 

RNA-guided transcription. Qi et al. generated a 

catalytically defective Cas9 (dCas9) mutant with 

no nuclease activity. dCas9 was co-expressed 

with gRNA to form a recognition complex, 

which could interfere with transcriptional 

elongation, RNA polymerase, and transcription 

factor binding (Qi et al., 2013). With two gRNAs 

targeted, respectively, a red fluorescent protein 

(RFP) gene and a green fluorescent protein 

(GFP) gene, Qi et al. observed that CRISPRi 

could simultaneously repress RFP and GFP 

expression without crosstalk in Escherichia coli 

(Qi et al., 2013). However, the degree of 

repression of gene expression achieved by 

CRISPRi was modest in mammalian cells. Qi et 

al. fused repressive effector or activating 

domains to dCas9, which together with gRNA 

could implement precise and stable 

transcriptional control of target genes, 

including transcription repression and 

activation (Qi et al., 2013). Chen et al. 

illustrated the performance of CRISPRi to 

individually or simultaneously regulate the 

transcription of multiple genes. CRISPRi 

provides a new, highly specific tool to switch 

gene expression without genetically altering 

the target DNA sequence (Cheng, Fan, Wen 

Du, 2020). 

 

Gene Therapy 

Precisely, genome editing has the potential to 

cure diseases permanently through the 

disruption of endogenous disease-causing 

genes, correcting disease-causing mutations, 

or inserting new protective genes (Ebina et al., 

2013). Using ZFNs-induced HDR, Urnov et al. 

corrected the disease-causing genetic 
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mutation in human cells for the first time. 

Subsequently, ZFNs were used to correct the 

genetic mutations that cause sickle cell disease 

and haemophilia B. Through disabling 

virulence genes or the insertion of protective 

genes, ZFNs have been used to induce 

resistance to virus infection in human cells and 

increase the efficiency of immunotherapies 

(Torikai et al., 2012). Like the newest 

engineered nucleases, CRISPR/Cas9 provides a 

new, highly efficient genome-editing tool for 

gene therapy studies. For example, Ebina et al. 

disrupted the HIV-1 genome long terminal 

repeat promoter using CRISPR/Cas9, which 

significantly decreased HIV-1 expression in 

infected human cells. Proviral viral genes 

integrated into host cell genomes can also be 

removed by CRISPR/Cas9 (Cheng, Fan, Wen 

Du, 2020, Torikai et al., 2012). 

With the rapid development of induced 

pluripotent stem cell (iPS) technology, modified 

nucleases are applied to the manipulation of 

the genome of iPS cells (Hockemeyer et al., 

2009). The unlimited capacity for self-renewal 

and multipotential differentiation of iPS cells 

makes them very useful in disease modelling 

and gene therapy. Using CRISPR/Cas9, Horri et 

al. created an iPS cell model for 

immunodeficiency, centromeric region 

instability, and facial anomalies syndrome (CIF) 

syndrome caused by mutation of the DNMT3B 

gene. In this study, iPS cells were transfected 

with plasmids expressing Cas9 and gRNA, 

which disrupted DNMT3B function in 

transfected iPS cells. Using the same hPSC lines 

and delivery method, Ding et al. compared the 

efficiencies of CRISPR/Cas9 and TALENs for 

genome editing of iPS cells. They observed that 

CRISPR/Cas9 was more efficient than TALENs 

(Ding et al., 2013). However, it is still a long way 

to apply CRISPR/Cas9 clinically for gene 

therapy. We must ensure the high specificity of 

CRISPR/Cas9 for the target sites and eliminate 

possible off-target mutations with negative 

effects. Careful selection of target sites, delicate 

gRNA design, and genome-wide potential 

research. Off-target sites are mostly needed 

(Cheng, Fan, Wen Du, 2020, Ding et al., 2013). 

 

Challenges 

Despite the great potential of CRISPR/Cas9 in 

genome editing, there are some important 

issues that need to be addressed, such as off-

target mutations, PAM ependency, gRNA 

production, and CRISPR/Cas9 delivery 

methods. 

 

Off-target mutations 

Off-target mutations are a major concern 

about CRISPR/Cas9-mediated genome editing. 

Compared with ZFNs and TALENs, 

CRISPR/Cas9 has a relatively high risk of off-

target mutations in human cells (Conant et al., 

2022, Fu et al., 2013). Large genomes often 

contain multiple DNA sequences that are 

identical or highly homologous to the target 

DNA sequences. In addition to the target DNA 

sequences, CRISPR/Cas9 also cleaves these 

identical or highly homologous DNA 

sequences, which leads to mutations at 

unwanted sites, called off-target mutations. 

Off-target mutations can result in cell death or 

transformation. To reduce the cellular toxicity 

of CRISPR/Cas9, more and more efforts are 

being made to eliminate off-target mutations 

of CRISPR/Cas9 (Conant et al., 2022, Fu et al., 

2013). To ensure the specificity of CRISPR/Cas9, 

it is best to select the target sites with the 

fewest off-target sites and incompatibilities 

between the gRNA and its complementary 

sequence. Xiao et al. recently developed a 

flexible CasOT search tool, which could identify 

potential off-target sites in whole genomes 

(Hendriks, Clevers & Artegiani, 2020, Xiao et al., 

2014). The dosage of CRISPR/Cas9 is another 

factor that affects off-target mutations and 
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must be carefully controlled. Methylation of the 

targeted DNA sequences did not appear to 

affect the specificity of CRISPR/Cas9. In 

addition, converting Cas9 to nickase can help 

reduce off-target mutations while maintaining 

the on-target cleavage efficiency implemented 

by CRISPR/Cas9 (Conant et al., 2022, Xiao et al., 

2014). 

 

Dependence on PAM 

Theoretically, CRISPR/Cas9 can be applied to 

any DNA sequence via engineered 

programmable gRNA. However, the specificity 

of CRISPR/Cas9 requires a 2~5 nt PAM 

sequence located immediately downstream of 

the target sequence, in addition to 

gRNA/target sequence complementarity 

(Laurent, Geoffroy, Pavani & Guiraud, 2024, 

Jinek et al., 2012). The PAM sequences 

identified vary between different Cas9 

orthologs, such as NGG PAM from 

Streptococcus pyogenes, NGGNG and 

NNAGAAW PAM from thermophilic 

Streptococcus, and NNNNGATT PAM from 

Neisseria meningitidis (Hendriks, Clevers & 

Artegiani, 2020, Jinek et al., 2012). Recently, 

Hsu et al. reported a NAG PAM, which had only 

approximately 20% efficiency of NGG PAM to 

guide DNA cleavage. For one, the PAM-

dependent manner of CRISPR/Cas9-mediated 

DNA cleavage constrains the frequencies of 

targetable sites in genomes. For example, it is 

possible to find a target site for 8 nucleotides 

for NGG PAM and NAG PAM, while for 32 and 

256 nucleotides for NGGNG PAM and 

NNAGAAW PAM. On the other hand, 

dependence on PAM also increases the 

specificity of CRISPR/Cas9. CRISPR /Cas9 off-

target mutations requiring long PAM should be 

smaller than CRISPR/Cas9 mutations requiring 

short MAP. 

 

gRNA production 

gRNA production is another important issue 

for CRISPR/Cas9-mediated genome editing. 

Due to the extensive post-transcriptional 

processing and modification of the mRNA 

transcribed by RNA polymerase II, it is currently 

difficult to apply RNA polymerase II for gRNA 

production. RNA polymerase III, U3, and U6 

snRNA promoters are currently used to 

produce gRNA in vivo. However, the snRNA U3 

and U6 genes are ubiquitously expressed 

maintenance genes, which cannot be used to 

generate specific tissues and gRNA cells. The 

lack of commercially available RNA polymerase 

III also limits the application of U3- and U6-

based gRNA production. Gao et al. designed 

an artificial RGR gene, whose transcribed 

mRNA contained desired sequences of gRNA 

and ribozyme at both ends of the gRNA. After 

self-catalyzed cleavage, mature gRNA was 

successfully produced and induced sequence-

specific cleavage in vitro and yeast (Laurent, 

Geoffroy, Pavani & Guiraud, 2024, Jinek et al., 

2012). 

 

Delivery methods 

Questions also remain about the methods of 

delivery of CRISPR/Cas9 into organisms. DNA 

and RNA-based techniques are used for 

CRISPR/Cas9 delivery, such as injection of 

plasmids expressing Cas9 and gRNA and 

injection of CRISPR components as RNA. The 

efficiency of delivery methods depends on the 

types of target cells and tissues. More attention 

should be paid to the development of new 

robust delivery methods for CRISPR/Cas9 

(Laurent, Geoffroy, Pavani & Guiraud, 2024, 

Jinek et al., 2012). 

 

Future Applications 

The possibilities for CRISPR's application are 

vast, including the treatment of genetic 

diseases, improvements in crops, and advances 

in biotechnology. However, ongoing research 
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is crucial to overcoming current challenges, 

and ensuring that gene editing is safe, 

accurate, and ethical. 

With continued research, the accuracy and 

safety of CRISPR edits are expected to improve, 

allowing for broader and safer applications in 

medicine and biotechnology. Global 

collaborations will be essential to regulate and 

guide the ethical use of technology (Laurent, 

Geoffroy, Pavani & Guiraud, 2024). 

 

Conclusion 

CRISPR therapy represents one of the most 

exciting frontiers of genetic medicine. While 

significant challenges remain, the ability to 

precisely edit genes opens up new possibilities 

for treating hitherto incurable diseases. As 

technology advances, CRISPR is expected to 

transform the global health landscape, offering 

hope and new therapeutic options to millions 

of people around the world.
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